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An important part of the evolution of metallocene chemistry

and metallocene-based polymerization chemistry has been the
development of cyclopentadienyl ligands to which other donor
functionalities have been attached.1-14 Ligand systems have been
designed which involve monoanionic cyclopentadienides attached
to neutral ether, amine, and hydrocarbon groups as well as
dianionic ansa ligands in which the cyclopentadienide is attached
to another anionic donor such as a cyclopentadienide or amide.
These have provided additional coordination opportunities and
in some cases unique and high reactivity in olefin polymerization.4-9

Among the tethered systems, those that incorporate olefinic
functionality are attractive for elucidating metal olefin interactions
and reaction pathways pertinent to olefin polymerization. For
example, Okuda has examined [C5Me4(CH2CH2CHdCH2)]- with
titanium,10 and Royo has studied [(C5H4)SiMe2(CH2CHdCH2)]-

with zirconium.11 Olefins tethered to alkyl and alkoxide ligands
have also been studied with yttrium and zirconium by Casey,
[CH2CH2CH2C(Me)dCH2]-,12,13 and Jordan, (OCMe2CH2CH2-
CHdCH2)-.14

In efforts to examine the metal olefin chemistry of yttrium and
the lanthanide metals in a well-defined cyclopentadienyl system,
we have prepared complexes of an alkene-substituted tetrameth-
ylcyclopentadienide. We report here the surprising hydrocarbon
elimination chemistry that occurred when yttrium alkyl complexes
of this ligand were prepared. Intramolecular hydrocarbon elimina-
tion reactions are well-known from the work of Schrock and
others to have the potential to generate unusual results and new
ligand systems.15-19 The formation of a new type of cyclopen-
tadienyl ligand is reported as well as reaction chemistry unusual
for metallocene-based olefin polymerization systems.

The alkene-substituted tetramethylcyclopentadiene (C5Me4H)-
SiMe2(CH2CHdCH2), 1, was synthesized by standard methods20-23

from Me2Si(C5Me4)Cl24 and allylmagnesium chloride. To avoid
the separation of the alkali metal byproducts of ionic metathesis
reactions involving metal chlorides,25 the ligand was attached to
yttrium by reacting1 with Y(CH2SiMe3)3(THF)2, 2.26,27 In the
course of these studies, it was established that this readily available
yttrium alkyl starting material exists as the octahedral facial
trisolvate, Y(CH2SiMe3)3(THF)3, when crystallized in the presence
of THF.28

The neutral diene1 reacts directly with2 in C6D6 to evolve
one equivalent of SiMe4 and form the bright yellow complex [(C5-
Me4)SiMe2(CH2CHdCH2)]Y(CH2SiMe3)2(THF)2, 3, Scheme 1.29
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H, THF), 1.82 (d,JHH ) 8 Hz, 2 H, CH2CHdCH2), 1.93 (s, 6 H, ringMe),
2.21 (s, 6 H, ringMe), 3.60 (m, 8 H, THF), 4.94 (m, 2 H, CH2CHdCH2),
5.83 (m, 1 H, CH2CHdCH2). 13C NMR (C6D6) δ: 0.3 (s, SiMe4), 0.5 (C5-
Me4SiMe2), 4.8 (s, CH2SiMe3), 11.8 (s, ringMe), 15.0 (s, ringMe), 25.5 (s,
THF), 26.5 (s,CH2CHdCH2), 34.7 (d,JYC ) 50 Hz, CH2SiMe3), 52.8 (s,
ring Si-C), 69.7 (s, THF), 113.5 (s, CH2CHdCH2), 123.6 (s, ringC-Me),
126.8, (s, ringC-Me), 136.1 (s, CH2CHdCH2). IR (thin film): 690 w, 802 s,
833 s, 891 m, 992 w, 1034 s, 1154 m, 1251 s, 1328 m, 1444 m, 1629 m,
2860 s, 2914 s, 2957 s, 3076 w, 3655 w, 3694 w cm-1.
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7711J. Am. Chem. Soc.2001,123,7711-7712

10.1021/ja004320u CCC: $20.00 © 2001 American Chemical Society
Published on Web 07/11/2001



The oily nature of3 frustrated attepts at definitive crystallographic
characterization, but the NMR spectra (complete with the expected
Y-C and Y-H coupling) were consistent with this composition.
No evidence for an yttrium olefin interaction was observed by
NMR spectroscopy. Further chemical confirmation of the com-
position of 3 was obtained by derivatization with CO2. {[Me2-
Si(C5Me4)(CH2CHdCH2)]Y(O2CCH2SiMe3)2}2, 4, the result of
CO2 insertion into each of the yttrium alkyl bonds, was isolated
and structurally characterized, Scheme 1.30

Samples of3 change color to dark red over several days at
room temperature or in 4 h at 65°C with the further evolution of
tetramethylsilane. No (Me3SiCH2)- ligand peaks remain in the
NMR spectrum of the product and the cyclopentadienyl reso-
nances broaden into the baseline even at low temperature.31

Crystals of the dark red compound could be isolated as both THF
and dimethoxyethane (DME) adducts. Each revealed thatdouble
metalation of the tetramethylcyclopentadienyl(dimethylsilylallyl)
ligand had occurred to form a new type oftrianionic cyclopen-
tadienyl allyl ligand, [Me2Si(C5Me4)(C3H3)]3-,32 in the complexes
{[Me2Si(C5Me4)(C3H3)]Y(L) }2 (L ) THF, 5; L ) DME, 6),
Scheme 1.33 Precedent for multiple hydrocarbon elimination
reactions has been shown by Schrock to occur in polyalkylmetal
complexes to form, for example, carbynes.15-19,34 The formation
of 5 and6 suggests that multiple metalation can occur with olefins
in metallocene environments.

The structures of the THF adduct,5, and the DME ligated
complex,6 (Figure 1), are similar. Each trianionic [Me2Si(C5Me4)-
(C3H3)]3- ligand bridges the two yttrium atoms by coordinating
η5:η1 to one metal andη3 to the other. One hydrogen atom was
found on each of the allyl carbon atoms, C12, C13, and C14 in
6. GC/MS analysis of the product of deuteriolysis of5 is consistent
with the trideuteride Me2Si(C5Me4D)C3H3D2.

It is evident that the trianion is sterically flexible since it can
crystallize with DME or THF giving yttrium formal coordination
numbers of both 7 and 8 in5 and 6, respectively. The DME

structure has uniformly longer Y-ligand distances including a
3.7231(5) Å Y‚‚‚Y distance versus 3.48(2) Å in5 and 3.53 and
3.58(1) Å in the simple methyl-bridged yttrium dimers [(C5H5)2Y-
(µ-Me)]235 and [(1,3,-Me2C5H3)2Y(µ-Me)]2,36 respectively. The
2.651(9) and 2.716(3) Å Y-C(ring) average distances in5 and6
are in the normal range,37 although the range in6, 2.630(3) to
2.780(3) Å, is large. The Y-(ring centroid) distances in5, 2.360
Å, and 6, 2.432 Å, can be compared to those in the chelating
(C5Me4R)2- complexes (η5:η1-C5Me4SiMe2NCMe2Et)Y(CH2-
SiMe3)(THF),27 2.333(7) Å, and (η5:η1-C5Me4SiMe2NCMe2Et)Y-
{CH(Me)C6H4-4-tBu}(THF),27 2.347(6) Å. The 2.398(6) Å THF
Y-O distance in5 is similar to the 2.319(5) and 2.374(4) Å
distances in the latter two complexes.27

The 2.399(9) and 2.456(3) Å Y-C distances of the CH moiety
which is closest to Y1, namely C14, in5 and6 can be compared
with the bridging methyl distances of 2.553(10) and 2.537(9) Å
in [(C5H5)2Y(µ-Me)]2 and [(1,3,-Me2C5H3)2Y(µ-Me)]2, respec-
tively, and the 2.468(7) and 2.427(19) Å terminal Y-C distances
in (C5Me5)YCH(SiMe3)2

38 and Y(CH2SiMe3)3(THF)3.28 The allylic
carbons C12′, C13′, and C14′ are found 2.573(9), 2.599(9), and
2.484(8) Å, respectively, from Y1 in5 and 2.622(3), 2.593(3),
and 2.536(3) Å from Y1 in6. This range of distances is well
within the range found in the substituted allyl compounds such
as (C5Me5)2Sm(η3-CH2CHCHR) (R) Me,Ph) and [(C5Me5)2Sm-
(µ-η3:η3-CH2CHCHCH2-)]2

39 when the difference in radial size
of the metal is taken into account.40 The C-C distances of the
allyl moiety in 6 are 1.429(4) Å for C12-C13 and 1.382(4) Å
for C13-C14, but in5, they are indistinguishable within the error
limits: 1.422(12) and 1.382(12) Å.

To our knowledge this is the first example of a trianionic
cyclopentadienyl allyl ligand system. Its formation demonstrates
that multiple metalation of alkene-substituted cyclopentadienyl
ligands is a new route to polyanionic organometallic ligands. It
also shows that in the proper coordination environment, allyl
moieties can be multiply metalated. This may be of interest in
regard to recent studies of allyl units on surfaces41 as well as
reactivity considerations involving olefins in cyclopentadienyl-
based polymerization systems. The high reactivity of5 and6 is
currently under investigation.
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Figure 1. Structure of{[Me2Si(C5Me4)(C3H3)]Y(DME)}2, 6, with thermal
ellipsoids drawn at the 50% probability level.
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